NEW FEED PROTEIN SOURCES
Products from fermentation -yeast-

Philippe Tacon
Phileo Lesaffre Animal Care
For Cofalec

October 09th, 2015

History shows search for food self-sufficiency

- Max Delbrück, 1910, work on surplus brewer’s yeast as a feeding supplement for animals.
- WWI: Germany can replace 50% of its imported protein sources by yeast (aerobic fermentation).
- 1919: Progress in fermentation by Sak and Hapduk.
- WWI: plans in Germany to produce 100 000 T/y to incorporate in army and civilian diets (only 15 000 produced). - In UK distinction between food yeast (bakers’ yeast) and fodder yeast (brewer’s yeast).
- During Cold War, the need to be self-sufficient in proteins incited both the US and Soviet Union to develop yeast production as both food and fodder, around 250 000T produced in the mid 60’s. Plans to produce 900 000T/y in the Soviet Union.
- In the 80’s, improvements in plant and crop production, lowered the interest for yeast.
- In the 90’s, the end of cold war and the GATT agreement, did not push the price of agricultural crops, so costs of yeast as food source was less interesting.

Now: Production of single cell proteins has a renewed interest

What are Single Cell Proteins (SCP)?

- Edible unicellular microorganisms.
- Algae, yeasts, fungi or bacteria.
- Can be used for human consumption, animal feeds.
- Can be grown on agricultural, human, animal waste products waste.
- Could be produced independently through autotrophic growth.

“Microbial products like yeast represent potential sustainable ingredients in aquafeeds due to their ability to convert low-value biomass from forestry and agricultural industry into high-value feed ingredients and with limited dependence on agricultural land, water, and changing climatic conditions.”

(Overland et al 2013)
Single Cell Protein, the ideal and cost-effective protein...

... But accident can happen with low quality grade products...

SCP like bacteria can produce also toxins. Example: B. cereus, toyocerin. What about regulation?

Use of SPC already enclosed in feed regulation

(1) The use of this Catalogue by the feed business operators shall be voluntary. However, the name of a feed material listed in Part C may be used only for a feed material complying with the requirements of the entry concerned.

(4) In accordance with good practice as referred to in Article 4 of Regulation (EC) No 183/2005 of the European Parliament and of the Council (1), feed materials shall be free from chemical impurities resulting from their manufacturing process and from processing aids.

12. Fermentation (by)products from microorganisms

• Bacteria, yeasts, fungi, by-products from fermentation.
• A large number of yeast species listed

The QPS status helps evaluating the risk

The Qualified Presumption of Safety (QPS) is a common risk assessment approach for use within EFSA.

QPS is NOT an EFSA approval of safety
QPS is NOT a regulatory status

Currently, the QPS approach is used for microorganisms of the broad categories listed below:

- Gram-Positive Non-Sporulating Bacteria
- Bifidobacterium
- Gram-Negative Bacteria
- Yeast
- Virus (plant viruses and insect viruses)
Here also a large number of yeasts are QPS

However, by-products from fermentation may be subject to restrictions in accordance with the GM feed and food legislation (R 1929/2003) if the fermentation process involves GMMOs.

What does it mean for producers?

The operator is responsible for the safety of its products and should put in place a risk analysis and controls. (R 186/2005)

Yeast (Saccharomyces cerevisiae), as primary production, belongs to the feed/food industry, and yeast producers are well aware of the risks.

They then have put in place appropriate controls to evaluate the risks.

Controlled bacterial protein production

Spirulina (cyanobacterium).

The aim is to produce bacterial as a protein source using waste

Some projects in development

NutriSync: aerobic wastewater treatment process to augment protein production by the heterotrophic bacteria responsible for wastewater treatment.

Unibio: using U-Loop fermentation technology to convert Methylococcus Capsulatus, a naturally occurring methane eating bacterium into UniProtein®, a highly concentrated protein.

FeedKind™: is a premium fish feed ingredient produced from naturally occurring microbes found in soil. Using a natural fermentation process similar to making yeast.

• 2 last ones aim at the fish meal market.
• Projects are at small scale development.
• Commercialization not scheduled before 2018.
• Needs to be GRAS/QPS
Use of yeast in animal feed

Yeast is a fragile, delicate organism. We do not manufacture yeast. We grow it.

- Yeast is a living microorganism. This microscopic fungus is no larger than 6 to 8 thousandths of a millimeter in size, yet has exceptional fermentation characteristics.
- The most well-known yeast is *Saccharomyces cerevisiae*.
- In the presence of air and nutrients introduced into the fermenter, yeast multiplies (yeast propagation).
- In the bread-making process, in the absence of air, it produces gas and alcohol.
- Yeast can be used for a variety of purposes. These include:
 - Making bread dough rise
 - Contributing to the flavor, sensory and nutritional qualities of bakery products
 - Producing fermented drinks
 - Improving the well-being of people, animals and plants
 - Producing bioethanol and new green chemistry products

Yeast: a living Treasure

S. cerevisiae
- Baker’s, brewer’s yeast
- Can be grown on molasses (corn, beetroot, sugar cane)

Candida utilis
- Torula yeast
- Can be grown on wood liquor, paper industry by-products

Kluyveromyces marxianus/factis
- Dairy yeast
- Can be grown on whey by-products

Not only one yeast but yeasts

A large variety of species
Some particular species in food/feed industries

Yeast is a fragile, delicate organism. We do not manufacture yeast. We grow it.

- Yeast is a living microorganism. This microscopic fungus is no larger than 6 to 8 thousandths of a millimeter in size, yet has exceptional fermentation characteristics.
- The most well-known yeast is *Saccharomyces cerevisiae*.
- In the presence of air and nutrients introduced into the fermenter, yeast multiplies (yeast propagation).
- In the bread-making process, in the absence of air, it produces gas and alcohol.
- Yeast can be used for a variety of purposes. These include:
 - Making bread dough rise
 - Contributing to the flavor, sensory and nutritional qualities of bakery products
 - Producing fermented drinks
 - Improving the well-being of people, animals and plants
 - Producing bioethanol and new green chemistry products

Yeast: a living Treasure

S. cerevisiae
- Baker’s, brewer’s yeast
- Can be grown on molasses (corn, beetroot, sugar cane)

Candida utilis
- Torula yeast
- Can be grown on wood liquor, paper industry by-products

Kluyveromyces marxianus/factis
- Dairy yeast
- Can be grown on whey by-products

Not only one yeast but yeasts

A large variety of species
Some particular species in food/feed industries

Yeast is a fragile, delicate organism. We do not manufacture yeast. We grow it.

- Yeast is a living microorganism. This microscopic fungus is no larger than 6 to 8 thousandths of a millimeter in size, yet has exceptional fermentation characteristics.
- The most well-known yeast is *Saccharomyces cerevisiae*.
- In the presence of air and nutrients introduced into the fermenter, yeast multiplies (yeast propagation).
- In the bread-making process, in the absence of air, it produces gas and alcohol.
- Yeast can be used for a variety of purposes. These include:
 - Making bread dough rise
 - Contributing to the flavor, sensory and nutritional qualities of bakery products
 - Producing fermented drinks
 - Improving the well-being of people, animals and plants
 - Producing bioethanol and new green chemistry products

Yeast: a living Treasure

S. cerevisiae
- Baker’s, brewer’s yeast
- Can be grown on molasses (corn, beetroot, sugar cane)

Candida utilis
- Torula yeast
- Can be grown on wood liquor, paper industry by-products

Kluyveromyces marxianus/factis
- Dairy yeast
- Can be grown on whey by-products
Huge diversity of marketed yeast derived products

Feed Yeast

- My products
 - Torula Yeast (paper industr)
 - Spent Brewer's yeast
- By-products
 - PRIMARY YEASTS culture
 - Inactivated mineral yeast
 - Inactivated Saccharomyces yeast

Source BCC yeast

Health through nutrition with live yeast and fractions

Probiotic yeast
- Microflora modification
- Rumen stabilization
- Pathogen exclusion

Feed additives
- Immune stimulant (Beta glucans –mannans)
- Palatability enhancer (AA- nucleotides)
- Improvement of gut health (Nucleotides)
- Mineral yeast

Primary dried yeast: a very controlled process
Spent Yeast – Brewery Origin

Selling:
- To brewers
- To animal companies
- To feed companies
- To pharmaceutical companies

Recycling:
- Brewers usually recycle yeast 4-8 times before inactivation
- Industrial brewers have a dedicated product line to extract RNA before giving away or selling spent yeast

Giving away:
- To farmers
- Dumped into sewer line or landfill
- Pay farmers to take spent grains

Spent yeast – Bioethanol origin

DDGS and spent yeast can contain antibiotics, mycotoxins

Food/Feed safety issue: The Food Modernization Act?

Yeast a good protein source

Nutritional composition of yeast

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Typical content (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamin (B1)</td>
<td>2-15 mg/100 g</td>
</tr>
<tr>
<td>Riboflavin (B2)</td>
<td>2-8 mg/100 g</td>
</tr>
<tr>
<td>Pyridoxin (B6)</td>
<td>0.5-6 mg/100 g</td>
</tr>
<tr>
<td>Biotin (B8)</td>
<td>0.05-0.25 mg/100 g</td>
</tr>
<tr>
<td>Folic acid (B9)</td>
<td>1-4 mg/100 g</td>
</tr>
<tr>
<td>Nicotinic acid (PP)</td>
<td>10-60 mg/100 g</td>
</tr>
</tbody>
</table>

Composition varies according to:
- Strain/substrate
- Process, autolysis, separation
- Process must be optimized

© 2015 Phileo – All rights reserved
Philippe Tacon for Cofalec
Very close in AA composition to fish & soy bean meals

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Yeast</th>
<th>Fish</th>
<th>Soy</th>
<th>Yeast</th>
<th>Fish</th>
<th>Soy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg</td>
<td>3.4</td>
<td>3.7</td>
<td>3.0</td>
<td>3.4</td>
<td>3.7</td>
<td>3.0</td>
</tr>
<tr>
<td>His</td>
<td>1.1</td>
<td>1.4</td>
<td>1.0</td>
<td>1.1</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Ile</td>
<td>2.1</td>
<td>2.5</td>
<td>1.8</td>
<td>2.1</td>
<td>2.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Leu</td>
<td>3.45</td>
<td>4.5</td>
<td>3.0</td>
<td>3.45</td>
<td>4.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Lys</td>
<td>3.6</td>
<td>4.7</td>
<td>2.4</td>
<td>3.6</td>
<td>4.7</td>
<td>2.4</td>
</tr>
<tr>
<td>Thr</td>
<td>2.1</td>
<td>2.5</td>
<td>1.6</td>
<td>2.1</td>
<td>2.5</td>
<td>1.6</td>
</tr>
<tr>
<td>Trp</td>
<td>0.57</td>
<td>0.7</td>
<td>0.5</td>
<td>0.57</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Val</td>
<td>2.5</td>
<td>2.7</td>
<td>1.9</td>
<td>2.5</td>
<td>2.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Met</td>
<td>0.2</td>
<td>1.8</td>
<td>0.6</td>
<td>0.2</td>
<td>1.8</td>
<td>0.6</td>
</tr>
<tr>
<td>Cys</td>
<td>0.05</td>
<td>0.4</td>
<td>0.6</td>
<td>0.05</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Phe</td>
<td>2.2</td>
<td>2.4</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>Tyr</td>
<td>1.8</td>
<td>1.9</td>
<td>1.4</td>
<td>1.8</td>
<td>1.9</td>
<td>1.4</td>
</tr>
</tbody>
</table>

High digestibility of yeast in animals

Nutritional parameters in rats, from Rivière 1977

<table>
<thead>
<tr>
<th>Organism</th>
<th>Digestibility</th>
<th>Biological value</th>
<th>Protein efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. cerevisiae</td>
<td>81</td>
<td>59</td>
<td>–</td>
</tr>
<tr>
<td>C. utilis</td>
<td>85</td>
<td>–</td>
<td>88</td>
</tr>
<tr>
<td>C. utilis + 0.5% DL met</td>
<td>90</td>
<td>90</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Ileal digestibility in pigs (Data from Phileo) – Instant dry

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Lysine (%)</th>
<th>Methionine (%)</th>
<th>Threonine (%)</th>
<th>Tryptophane (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast (int)</td>
<td>84%</td>
<td>91%</td>
<td>77%</td>
<td>89%</td>
</tr>
<tr>
<td>Fish (int)</td>
<td>87%</td>
<td>86%</td>
<td>77%</td>
<td>87%</td>
</tr>
<tr>
<td>Soy (int)</td>
<td>84%</td>
<td>83%</td>
<td>82%</td>
<td>79%</td>
</tr>
</tbody>
</table>

Apparent digestibility in salmon (Overland et al 2013)

<table>
<thead>
<tr>
<th>Amino Acid</th>
<th>Lysine (%)</th>
<th>Methionine (%)</th>
<th>Threonine (%)</th>
<th>Tryptophane (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeast (int)</td>
<td>87%</td>
<td>87%</td>
<td>85%</td>
<td>87%</td>
</tr>
<tr>
<td>Fish (int)</td>
<td>87%</td>
<td>83%</td>
<td>85%</td>
<td>77%</td>
</tr>
<tr>
<td>Soy (int)</td>
<td>86%</td>
<td>83%</td>
<td>82%</td>
<td>75%</td>
</tr>
</tbody>
</table>

Given facts

- High nucleic acid content limits the dose incorporated because of uric acid deposition
- Risk of acidosis
- Supplementation with sulfur AA

Incorporation rates must be optimized through nutrition studies according to species needs.

Need to work with standardized products
What is yeast future as an alternative protein source?

Spent yeast, a dynamic and promising market...

<table>
<thead>
<tr>
<th>Volume (000 metric tons)</th>
<th>CAGR 2014-2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spent yeast</td>
<td>151 or 700*</td>
</tr>
<tr>
<td></td>
<td>9.5%</td>
</tr>
</tbody>
</table>

Animals species: Poultry, Swine, Cattle
Largest market: Asia and North America

*Depending on market studies.

(Market and Markets 2014)

But a standard and safe product has a price.

Market will require guaranteed safe products
Controlled production
Optimize production costs
Primary yeast culture (fermentation)
Develop high value products
High costs/protein source on the market
Cost of production highly dependent of cost of substrate (molasses)

© 2015 Phileo - All rights reserved
Yeast can help build better food

- Healthy
- New feed protein
- Ethical
- Safe
- Green

A Sustainable High Quality Protein

- Good protein content; AA balance, digestibility
- Possible use as a supplement in SDPP, fish meal, replacement strategies
- Ethical production

Yeast is not yeast

- Safety guaranteed with Primary yeast culture

High capacity production

- An experienced industry
- Improvement of cost effectiveness.

Thank you for your attention